
Oracle and storage IOs explanations andOracle and storage IOs, explanations and
experience at CERN

CHEP 2009 Prague [id 28]CHEP 2009 Prague [id. 28]

Eric GrancherEric Grancher
eric.grancher@cern.ch

CERN IT department

Image courtesy of Forschungszentrum Jülich /
Seitenplan, with material from NASA, ESA and
AURA/Caltech

Outline

• Oracle and IO
L i l d Ph i l IO– Logical and Physical IO

– Instrumentation
IO d A i S i Hi– IO and Active Session History

• Oracle IO and mis-interpretation
– IO saturation
– CPU saturation

• Newer IO devices / sub-systems and Oracle
– Exadata
– SSD

• ConclusionsConclusions
• References

2

PIO versus LIO

• Even so memory access is fast compared to disk
access LIO are actually expensiveaccess, LIO are actually expensive

• LIO cost latching and CPU
• Tuning using LIO reduction as a reference is

advised
• The best IO is the IO which is avoided ☺

• See “Why You Should Focus on LIOs Instead of
PIOs” Carry MillsapPIOs Carry Millsap

3

Oracle instrumentation

• One has to measure “where the PIO are
performed” and “how long they take / how many perperformed and how long they take / how many per
second are performed”
O l i i d id h• Oracle instrumentation and counters provide us the
necessary information, raw and aggregated

Oracle
t1 t2 t1 t2 t1 t2

Oracle

OS

IO

4

time

Oracle instrumentation

• Individual wait events:
10046 t EXECUTE– 10046 event or EXECUTE
DBMS_MONITOR.SESSION_TRACE_ENABLE(83,5,
TRUE FALSE); then EXECUTETRUE, FALSE); then EXECUTE
DBMS_MONITOR.SESSION_TRACE_DISABLE(83,5);

– Trace file contains lines like:Trace file contains lines like:
WAIT #5: nam='db file sequential read'
ela=6784 file#=6 block#=467667 blocks=1
obj#=73442 tim=1490530491532

• Session wait: V$SESSION WAIT (V$SESSION 10.1+)$ _ ($)
• Aggregated wait events:

– Aggr session: V$SESSION EVENT– Aggr session: V$SESSION_EVENT
– Aggr system-wide: V$SYSTEM_EVENT

5

ASH and IO (1/4)

– Using Active Session History
• Sampling of session information every 1s• Sampling of session information every 1s
• Not biased (just time sampling), so reliable source of information
• Obviously not all information is recorded so some might be

missed

– Can be accessed via
• @ashrpt / @ashrpti
• V$ACTIVE_SESSION_HISTORY (in memory information) and

DBA HIST ACTIVE SESS HISTORY (persisted on disk)DBA_HIST_ACTIVE_SESS_HISTORY (persisted on disk)

6

ASH and IO (2/4)

• Sample every 1s of every _active sessions_

7From Graham Wood (see reference)

ASH and IO (3/4)

8From Graham Wood (see reference)

ASH and IO (4/4)
SQL> EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(69,17062, TRUE, FALSE);

PL/SQL procedure successfully completed.

SQL> select to_char(sample_time,'HH24MISS') ts,seq#,p1,p2,time_waited from v$active_session_history where SESSION_ID=
69 and session_serial#=17062
2 and SESSION_STATE = 'WAITING' and event='db file sequential read' and sample_time>sysdate -5/24/3600
3 order by sample_time;

TS SEQ# P1 P2 TIME_WAITED
------ ---------- ---------- ---------- -----------
001557 45565 6 449426 5355

001558 45716 6 179376 10118
001559 45862 6 702316 7886
001600 46014 7 91988 5286
001601 46167 7 424665 7594

001602 46288 6 124184 0

SQL> EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(69,17062);

PL/SQL procedure successfully completed.

-bash-3.00$ grep -n 124184 orcl_ora_15854.trc
676:WAIT #2: nam='db file sequential read' ela= 5355 file#=6 block#=449426 blocks=1 obj#=73442 tim=2707602560910
[...]

829:WAIT #2: nam='db file sequential read' ela= 10118 file#=6 block#=179376 blocks=1 obj#=73442 tim=2707603572300
[...]

977:WAIT #2: nam='db file sequential read' ela= 7886 file#=6 block#=702316 blocks=1 obj#=73442 tim=2707604583489
[...]
1131:WAIT #2: nam='db file sequential read' ela= 5286 file#=7 block#=91988 blocks=1 obj#=73442 tim=2707605593626
[...]
1286:WAIT #2: nam='db file sequential read' ela= 7594 file#=7 block#=424665 blocks=1 obj#=73442 tim=2707606607137

9

[...]

1409:WAIT #2: nam='db file sequential read' ela= 8861 file#=6 block#=124184 blocks=1 obj#=73442 tim=2707607617211

Cross verification, ASH and
10046 trace (1/2)()

• How to identify which segments are accessed most
often from a given session? (h ti d it ll)often from a given session? (ashrpti can do it as well)

Ul i i f i i i 10046• Ultimate information is in a 10046 trace
• Extract necessary information, load into t(p1,p2)

> grep "db file sequential read" accmeas2_j004_32116.trc | head -2
WAIT #12: nam='db file sequential read' ela= 11175 file#=13 block#=200041
blocks=1 obj#=67575 tim=1193690114589134

WAIT #12: nam='db file sequential read' ela= 9454 file#=6 block#=587915
blocks=1 obj#=67577 tim=1193690114672648blocks=1 obj#=67577 tim=1193690114672648

accmeas_2 bdump > grep "db file sequential read" accmeas2_j004_32116.trc
| head -2 | awk '{print $9"="$10}' | awk -F= '{print $2","$4}'
13 20004113,200041
6,587915

SQL> select distinct
t PARTITION NAME (b t /1024/1024) i MB f

10

e.owner,e.segment_name,e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from
t, dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id and
e.block_id+e.blocks order by e.owner,e.segment_name,e.PARTITION_NAME;

Cross verification, ASH and
10046 trace (2/2)()

• Take information from v$active_session_history

create table t as select p1,p2 from v$active_session_history h where
h.module like 'DATA_LOAD%' and h.action like 'COLLECT_DN%' and
h.event ='db file sequential read' and h.sample_time>sysdate-4/24;

SQL> select distinctSQL> select distinct
e.owner,e.segment_name,e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from
t, dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id and
e.block_id+e.blocks order by e.owner,e.segment_name,e.PARTITION_NAME;

11

DStackProf example
-bash-3.00$./dstackprof.sh 11073

DStackProf v1.02 by Tanel Poder (http://www.tanelpoder.com)
Sampling pid 11073 for 5 seconds with stack depth of 100 frames...
[][...]
780 samples with stack below

libc.so.1`_pread
skgfqio note 175982 1ksfd_skgfqio
ksfd_io
ksfdread1 ksfd: support for various kernel associated capabilities
kcfrbd manages and coordinates operations on the control file(s)
kcbzib

note 175982.1

kcbgtcr kcb: manages Oracle's buffer cache operation as well as
operations used by capabilities such as direct load, has clusters , etc.
ktrget2 ktr - kernel transaction read consistency
kdsgrp kds: operations on data such as retrieving a row and updating
existing row dataexisting row data
qetlbr
qertbFetchByRowID qertb - table row source
qerjotRowProc qerjo - row source: join
kdstf0000001000kmP
kdsttgr kds: operations on data such as retrieving a row and updating
existing row data
qertbFetch qertb - table row source
qerjotFetch qerjo - row source: join
qergsFetch qergs - group by sort row source

12

q g q g g p y
opifch2
Kpoal8 / opiodr / ttcpip/ opitsk / opiino / opiodr / opidrv / sou2o / a.out`main / a.out`_start

OS level

• You can measure (with the least overhead),
selecting only the syscalls that you needselecting only the syscalls that you need

• For example, pread
-bash-3.00$ truss -t pread -Dp 17924
/1: 0.0065 pread(258, "06A2\0\001CA9EE1\0 !B886".., 8192, 0x153DC2000) = 8192
/1: 0.0075 pread(257, "06A2\0\0018CFEE4\0 !C004".., 8192, 0x19FDC8000) = 8192
/1: 0.0078 pread(258, "06A2\0\001C4CEE9\0 !92AA".., 8192, 0x99DD2000) = 8192
/1: 0.0103 pread(257, "06A2\0\00188 S F\0 !A6C9".., 8192, 0x10A68C000) = 8192
/1: 0.0072 pread(257, "06A2\0\0018E kD7\0 !CFC2".., 8192, 0x1CD7AE000) = 8192

-bash-3.00$ truss -t pread -Dp 15854 2>&1 | awk '{s+=$2; if (NR%1000==0) {print NR " " s " "
s/NR}}'s/ }}
1000 7.6375 0.0076375
2000 15.1071 0.00755355
3000 22.4648 0.00748827

13

Overload at disk driver /
system level (1/2)y ()

• Each (spinning) disk is capable of ~ 100 to 300 IO
operations per second depending on the speed andoperations per second depending on the speed and
controller capabilities
P i h i f h• Putting many requests at the same time from the
Oracle layer, makes as if IO takes longer to be

i dserviced

14

Overload at disk driver level /
system level (2/2)y ()

8*X threads

4*X threads

X th d
2*X threads

X threads

15IO operations per second

Overload at CPU level

• Observed many times: “the storage is slow” (and
storage administrators/specialists say “storage isstorage administrators/specialists say storage is
fine / not loaded”)
T i ll h h b d (f O l• Typically happens that observed (from Oracle
rdbms point of view) IO wait times are long if CPU
l d i hi hload is high

• Instrumentation / on-off cpu

16

Overload at CPU level, example

load growing hit load limit !m
s load growing hit load limit !

an
 1

00
0m

be
 le

ss
 th

a
s)

, h
as

 to
 b

n
tim

e
(m

s
In

se
rti

on

17
15k... 30k ... 60k... 90k... 120k ...135k... || 150k (insertions per second)

OS level / high-load

Oracle
t1 t2 t1 t2 t1 t2

Oracle

OS

IO
Acceptable

load

time

t1 t2 t1 t2
Oracle

t1 t2 t1 t2

OS

IO
High loadOff cpu

18

IO

Overload at CPU level, DTrace

• DTrace (Solaris) can be used at OS level to get
(detailed) information at OS level(detailed) information at OS level

syscall::pread:entry
/pid == $target && self->traceme == 0 /
{

self->traceme = 1;
self->on = timestamp;
self->off= timestamp;
self->io start=timestamp;_ p;

}

syscall::pread:entry
/self->traceme == 1 /
{{

self->io_start=timestamp;
}

syscall::pread:return
/ //self->traceme == 1 /
{

@avgs["avg_io"] = avg(timestamp-self->io_start);
@[tid,"time_io"] = quantize(timestamp-self->io_start);
@counts["count io"] = count();

19

_
}

DTrace
sched:::on-cpu
/pid == $target && self->traceme == 1 /
{

self >on timestamp;self->on = timestamp;
@[tid,"off-cpu"] = quantize(self->on - self->off);
@totals["total_cpu_off"] = sum(self->on - self->off);
@avgs["avg_cpu_off"] = avg (self->on - self->off);
@counts["count_cpu_on"] = count();

}}
sched:::off-cpu
/self->traceme == 1/
{

self->off= timestamp;p;
@totals["total_cpu_on"] = sum(self->off - self->on);
@avgs["avg_cpu_on"] = avg(self->off - self->on);
@[tid,"on-cpu"] = quantize(self->off - self->on);
@counts["count_cpu_off"] = count();

}}

tick-1sec
/i++ >= 5/
{

exit(0);
}

20

DTrace, “normal load”
-bash-3.00$ sudo ./cpu.d4 -p 15854
dtrace: script './cpu.d4' matched 7 probes
CPU ID FUNCTION:NAME

3 52078 :tick-1sec

avg_cpu_on 169114
avg_cpu_off 6768876
avg_io 6850397

[...]

1 off-cpu
value ------------- Distribution ------------- count

524288 | 0524288 | 0
1048576 | 2
2097152 |@@@@ 86
4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 577
8388608 |@@@@@@@@@ 189

|16777216 | 2
33554432 | 0

[...]

count_cpu_on 856
count_io 856
count_cpu_off 857
total_cpu_on 144931300
total cpu off 5794158700

21

total_cpu_off 5794158700

DTrace, “high load”
-bash-3.00$ sudo ./cpu.d4 -p 15854
dtrace: script './cpu.d4' matched 7 probes
CPU ID FUNCTION:NAME

2 52078 :tick-1sec

avg_cpu_on 210391

avg_cpu_off 10409057
avg_io 10889597

[][...]
1 off-cpu

value ------------- Distribution ------------- count
8192 | 0

16384 | 4
32768 |@ 11
65536 | 2

131072 | 0
262144 | 0
524288 | 0|

1048576 | 0
2097152 |@ 15
4194304 |@@@@@@@@@@@@@@ 177
8388608 |@@@@@@@@@@@@@@@@@@@@ 249

16777216 |@@@ 4116777216 |@@@ 41
33554432 | 4
67108864 | 0

[...]
count_io 486

22

count_cpu_on 503
count_cpu_off 504
total_cpu_on 106037500
total_cpu_off 5235756100

Exadata (1/2)

• Exadata has a number of offload features, most
published about are row selection and columnpublished about are row selection and column
selection
S f kl d d i i i i• Some of our workloads are data insertion intensive,
for these the tablespace creation is/can be a

blproblem
• Additional load, additional IO head moves,

additional bandwidth usage on the connection
server→storage

• Exadata has file creation offloading
• Tested with 4 Exadata cells storage Tests doneTested with 4 Exadata cells storage. Tests done

with Anton Topurov / Ela Gajewska-Dendek
23

Swingbench in action

Exadata (2/2)

Severalon
 ti

m
e

Several
tablespace
switches

Several
tablespace
switchesE

xe
cu

tio

25

_cell_fcre=true _cell_fcre=false

SSD (1/6)

• Solid-State Drive, based on flash, means many
different thingsdifferent things

• Single Level Cell (more expensive, said to be
li bl / f) / M l i l L l C llmore reliable / faster) / Multiple Level Cell

• Competition in the consumer market is shown on
the bandwidth...

• Tests done thanks to Peter Kelemen / CERN –
Linux (some done only by him)

26

SSD (2/6)

• Here are results for 5 different types / models
“ ” SS• Large variety, even the “single level cell” SSDs

• (as expected) The biggest difference is with the
writing IO operations per second

27

SSD (3/6)

Write IOPS Write IOPS
capacity for
devices 1/2/3
is between 50

capacity for
devices 1/2/3
is between 50
and 120!and 120!

28

SSD (4/6)

SSD (5/6)

30

SSD (6/6) “devices 4 and 5”

• “expensive” and “small” (50GB), complex, very
promisingpromising

• For random read small IO operations (8KiB), we
4000 000 IOPS (26measure ~4000 to 5000 IOPS (compare to 26

disks)
• For small random write operations (8KiB), we

measure 2000 to 3000+ write IOPS (compare to 13
disks)

• But for some of the 8K offsets the I/O completion p
latency is 10× the more common 0.2 ms

• “Wear-levelling/erasure block artefacts”?Wear levelling/erasure block artefacts ?

31

Conclusions

• New tools like ASH and DTrace change the way we
can track IO operationscan track IO operations

• Overload in IO and CPU can not be seen from
O l IO iOracle IO views

• Exadata offloading operations can be interesting
(and promising)

• Flash SSD are coming, a lot of differences between g,
them. Writing is the issue (and is a driving price
factor). Not applicable for everything. Not to be) pp y g
used for everything for now (as write cache? Oracle
redo logs). They change the way IO operations are g) y g y p
perceived.

32

References

• Why You Should Focus on LIOs Instead of PIOs
Author Cary Millsap http://www hotsos com/eAuthor, Cary Millsap http://www.hotsos.com/e-
library/abstract.php?id=7
T l P d DS kP f• Tanel Poder DStackProf
http://tanelpoder.otepad.com/script:dstackprof.sh

• Metalink Note 175982.1
• Tanel Poder os explain.sh _ p

http://www.tanelpoder.com/files/scripts/os_explain

UKOUG Conference 2009 - 33

Q&A

34

