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PIO versus LIO

• Even so memory access is fast compared to disk 
access LIO are actually expensiveaccess, LIO are actually expensive

• LIO cost latching and CPU
• Tuning using LIO reduction as a reference is 

advised
• The best IO is the IO which is avoided ☺

• See “Why You Should Focus on LIOs Instead of 
PIOs” Carry MillsapPIOs  Carry Millsap
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Oracle instrumentation

• One has to measure “where the PIO are 
performed” and “how long they take / how many perperformed  and how long they take / how many per 
second are performed”
O l i i d id h• Oracle instrumentation and counters provide us the 
necessary information, raw and aggregated

Oracle
t1 t2 t1 t2 t1 t2

Oracle

OS

IO
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Oracle instrumentation

• Individual wait events:
10046 t EXECUTE– 10046 event or EXECUTE 
DBMS_MONITOR.SESSION_TRACE_ENABLE(83,5, 
TRUE FALSE); then EXECUTETRUE, FALSE); then EXECUTE 
DBMS_MONITOR.SESSION_TRACE_DISABLE(83,5);

– Trace file contains lines like:Trace file contains lines like: 
WAIT #5: nam='db file sequential read' 
ela=6784 file#=6 block#=467667 blocks=1 
obj#=73442 tim=1490530491532

• Session wait: V$SESSION WAIT (V$SESSION 10.1+)$ _ ( $ )
• Aggregated wait events:

– Aggr session: V$SESSION EVENT– Aggr session: V$SESSION_EVENT
– Aggr system-wide: V$SYSTEM_EVENT
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ASH and IO (1/4)

– Using Active Session History
• Sampling of session information every 1s• Sampling of session information every 1s
• Not biased (just time sampling), so reliable source of information
• Obviously not all information is recorded so some might be 

missed

– Can be accessed via
• @ashrpt / @ashrpti
• V$ACTIVE_SESSION_HISTORY (in memory information) and 

DBA HIST ACTIVE SESS HISTORY (persisted on disk)DBA_HIST_ACTIVE_SESS_HISTORY (persisted on disk)
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ASH and IO (2/4)

• Sample every 1s of every _active sessions_ 

7From Graham Wood (see reference)



ASH and IO (3/4)

8From Graham Wood (see reference)



ASH and IO (4/4)
SQL> EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(69,17062, TRUE, FALSE);

PL/SQL procedure successfully completed.

SQL> select to_char(sample_time,'HH24MISS') ts,seq#,p1,p2,time_waited from v$active_session_history where SESSION_ID= 
69 and session_serial#=17062
2  and SESSION_STATE = 'WAITING' and event='db file sequential read' and sample_time>sysdate -5/24/3600
3  order by sample_time;

TS           SEQ#         P1         P2 TIME_WAITED
------ ---------- ---------- ---------- -----------
001557      45565          6     449426        5355

001558      45716          6     179376 10118
001559      45862          6     702316        7886
001600      46014          7      91988        5286
001601      46167          7     424665        7594

001602      46288          6     124184 0

SQL> EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(69,17062);

PL/SQL procedure successfully completed.

-bash-3.00$ grep -n 124184 orcl_ora_15854.trc
676:WAIT #2: nam='db file sequential read' ela= 5355 file#=6 block#=449426 blocks=1 obj#=73442 tim=2707602560910 
[...]

829:WAIT #2: nam='db file sequential read' ela= 10118 file#=6 block#=179376 blocks=1 obj#=73442 tim=2707603572300 
[...]

977:WAIT #2: nam='db file sequential read' ela= 7886 file#=6 block#=702316 blocks=1 obj#=73442 tim=2707604583489 
[...]
1131:WAIT #2: nam='db file sequential read' ela= 5286 file#=7 block#=91988 blocks=1 obj#=73442 tim=2707605593626
[...]
1286:WAIT #2: nam='db file sequential read' ela= 7594 file#=7 block#=424665 blocks=1 obj#=73442 tim=2707606607137
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[...]

1409:WAIT #2: nam='db file sequential read' ela= 8861 file#=6 block#=124184 blocks=1 obj#=73442 tim=2707607617211



Cross verification, ASH and 
10046 trace (1/2)( )

• How to identify which segments are accessed most 
often from a given session? ( h ti d it ll)often from a given session? (ashrpti can do it as well)

Ul i i f i i i 10046• Ultimate information is in a 10046 trace
• Extract necessary information, load into t(p1,p2)

> grep "db file sequential read" accmeas2_j004_32116.trc  | head -2
WAIT #12: nam='db file sequential read' ela= 11175 file#=13 block#=200041 
blocks=1 obj#=67575 tim=1193690114589134

WAIT #12: nam='db file sequential read' ela= 9454 file#=6 block#=587915 
blocks=1 obj#=67577 tim=1193690114672648blocks=1 obj#=67577 tim=1193690114672648

accmeas_2 bdump > grep "db file sequential read" accmeas2_j004_32116.trc  
| head -2 | awk '{print $9"="$10}' | awk -F= '{print $2","$4}'
13 20004113,200041
6,587915

SQL> select distinct 
t PARTITION NAME ( b t /1024/1024) i MB f
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e.owner,e.segment_name,e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from
t, dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id and 
e.block_id+e.blocks order by e.owner,e.segment_name,e.PARTITION_NAME;



Cross verification, ASH and 
10046 trace (2/2)( )

• Take information from v$active_session_history

create table t as select p1,p2 from v$active_session_history h where 
h.module like 'DATA_LOAD%' and h.action like 'COLLECT_DN%' and 
h.event ='db file sequential read' and h.sample_time>sysdate-4/24;

SQL> select distinctSQL> select distinct 
e.owner,e.segment_name,e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from
t, dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id and 
e.block_id+e.blocks order by e.owner,e.segment_name,e.PARTITION_NAME;
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DStackProf example
-bash-3.00$ ./dstackprof.sh 11073 

DStackProf v1.02 by Tanel Poder ( http://www.tanelpoder.com )
Sampling pid 11073 for 5 seconds with stack depth of 100 frames...
[ ][...]
780 samples with stack below
__________________
libc.so.1`_pread
skgfqio note 175982 1ksfd_skgfqio
ksfd_io
ksfdread1 ksfd: support for various kernel associated capabilities
kcfrbd manages and coordinates operations on the control file(s)
kcbzib

note 175982.1

kcbgtcr kcb: manages Oracle's buffer cache operation as well as 
operations used by capabilities such as direct load, has clusters , etc.
ktrget2 ktr - kernel transaction read consistency
kdsgrp kds: operations on data such as retrieving a row and updating 
existing row dataexisting row data
qetlbr
qertbFetchByRowID qertb - table row source
qerjotRowProc qerjo - row source: join
kdstf0000001000kmP
kdsttgr kds: operations on data such as retrieving a row and updating 
existing row data
qertbFetch qertb - table row source
qerjotFetch qerjo - row source: join
qergsFetch qergs - group by sort row source
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OS level

• You can measure (with the least overhead), 
selecting only the syscalls that you needselecting only the syscalls that you need

• For example, pread
-bash-3.00$ truss -t pread -Dp 17924
/1:      0.0065 pread(258, "06A2\0\001CA9EE1\0 !B886".., 8192, 0x153DC2000) = 8192
/1:      0.0075 pread(257, "06A2\0\0018CFEE4\0 !C004".., 8192, 0x19FDC8000) = 8192
/1:      0.0078 pread(258, "06A2\0\001C4CEE9\0 !92AA".., 8192, 0x99DD2000) = 8192
/1:      0.0103 pread(257, "06A2\0\00188 S F\0 !A6C9".., 8192, 0x10A68C000) = 8192
/1:      0.0072 pread(257, "06A2\0\0018E kD7\0 !CFC2".., 8192, 0x1CD7AE000) = 8192

-bash-3.00$ truss -t pread -Dp 15854 2>&1 | awk '{s+=$2; if (NR%1000==0) {print NR " " s " " 
s/NR}}'s/ }}
1000 7.6375  0.0076375
2000 15.1071 0.00755355
3000 22.4648 0.00748827
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Overload at disk driver / 
system level (1/2)y ( )

• Each (spinning) disk is capable of ~ 100 to 300 IO 
operations per second depending on the speed andoperations per second depending on the speed and 
controller capabilities
P i h i f h• Putting many requests at the same time from the 
Oracle layer, makes as if IO takes longer to be 

i dserviced
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Overload at disk driver level / 
system level (2/2)y ( )

8*X threads

4*X threads

X th d
2*X threads

X threads

15IO operations per second



Overload at CPU level 

• Observed many times: “the storage is slow” (and 
storage administrators/specialists say “storage isstorage administrators/specialists say storage is 
fine / not loaded”)
T i ll h h b d (f O l• Typically happens that observed (from Oracle 
rdbms point of view) IO wait times are long if CPU 
l d i hi hload is high

• Instrumentation / on-off cpu
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Overload at CPU level, example
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OS level / high-load

Oracle
t1 t2 t1 t2 t1 t2

Oracle

OS

IO
Acceptable

load

time

t1 t2 t1 t2
Oracle

t1 t2 t1 t2

OS

IO
High loadOff cpu
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Overload at CPU level, DTrace

• DTrace (Solaris) can be used at OS level to get 
(detailed) information at OS level(detailed) information at OS level

syscall::pread:entry
/pid == $target && self->traceme == 0 /
{

self->traceme = 1;
self->on = timestamp;
self->off= timestamp;
self->io start=timestamp;_ p;

}

syscall::pread:entry
/self->traceme == 1 /
{{

self->io_start=timestamp;
}

syscall::pread:return
/ //self->traceme == 1 /
{

@avgs["avg_io"] = avg(timestamp-self->io_start);
@[tid,"time_io"] = quantize(timestamp-self->io_start);
@counts["count io"] = count();

19
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DTrace
sched:::on-cpu
/pid == $target && self->traceme == 1 /
{

self >on timestamp;self->on = timestamp;
@[tid,"off-cpu"] = quantize(self->on - self->off);
@totals["total_cpu_off"] = sum(self->on - self->off);
@avgs["avg_cpu_off"] = avg (self->on - self->off);
@counts["count_cpu_on"] = count();

}}
sched:::off-cpu
/self->traceme == 1/
{

self->off= timestamp;p;
@totals["total_cpu_on"] = sum(self->off - self->on);
@avgs["avg_cpu_on"] = avg(self->off - self->on);
@[tid,"on-cpu"] = quantize(self->off - self->on);
@counts["count_cpu_off"] = count();

}}

tick-1sec
/i++ >= 5/
{

exit(0);
}
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DTrace, “normal load”
-bash-3.00$ sudo ./cpu.d4 -p 15854
dtrace: script './cpu.d4' matched 7 probes
CPU     ID                    FUNCTION:NAME

3  52078                       :tick-1sec

avg_cpu_on 169114
avg_cpu_off 6768876
avg_io 6850397

[...]

1  off-cpu
value  ------------- Distribution ------------- count

524288 | 0524288 |                                         0
1048576 |                                         2
2097152 |@@@@                                     86
4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@              577
8388608 |@@@@@@@@@                                189

|16777216 |                                         2
33554432 |                                         0

[...]

count_cpu_on 856
count_io 856
count_cpu_off 857
total_cpu_on 144931300
total cpu off 5794158700
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total_cpu_off 5794158700



DTrace, “high load”
-bash-3.00$ sudo ./cpu.d4 -p 15854
dtrace: script './cpu.d4' matched 7 probes
CPU     ID                    FUNCTION:NAME

2  52078                       :tick-1sec

avg_cpu_on 210391

avg_cpu_off 10409057
avg_io 10889597

[ ][...]
1  off-cpu

value  ------------- Distribution ------------- count
8192 |                                         0

16384 |                                         4
32768 |@                                        11
65536 |                                         2

131072 |                                         0
262144 |                                         0
524288 |                                         0|

1048576 |                                         0
2097152 |@                                        15
4194304 |@@@@@@@@@@@@@@                           177
8388608 |@@@@@@@@@@@@@@@@@@@@                     249

16777216 |@@@ 4116777216 |@@@                                      41
33554432 |                                         4
67108864 |                                         0

[...]
count_io 486
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count_cpu_on 503
count_cpu_off 504
total_cpu_on 106037500
total_cpu_off 5235756100



Exadata (1/2)

• Exadata has a number of offload features, most 
published about are row selection and columnpublished about are row selection and column 
selection
S f kl d d i i i i• Some of our workloads are data insertion intensive, 
for these the tablespace creation is/can be a 

blproblem
• Additional load, additional IO head moves, 

additional bandwidth usage on the connection 
server→storage

• Exadata has file creation offloading
• Tested with 4 Exadata cells storage Tests doneTested with 4 Exadata cells storage. Tests done 

with Anton Topurov / Ela Gajewska-Dendek
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Swingbench in action



Exadata (2/2)
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SSD (1/6)

• Solid-State Drive, based on flash, means many 
different thingsdifferent things

• Single Level Cell (more expensive, said to be 
li bl / f ) / M l i l L l C llmore reliable / faster) / Multiple Level Cell

• Competition in the consumer market is shown on 
the bandwidth...

• Tests done thanks to Peter Kelemen / CERN –
Linux (some done only by him)
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SSD (2/6)

• Here are results for 5 different types / models
“ ” SS• Large variety, even the “single level cell” SSDs

• (as expected) The biggest difference is with the 
writing IO operations per second
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SSD (3/6)

Write IOPS Write IOPS 
capacity for 
devices 1/2/3 
is between 50 

capacity for 
devices 1/2/3 
is between 50 
and 120!and 120!
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SSD (4/6)



SSD (5/6)
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SSD (6/6) “devices 4 and 5”

• “expensive” and “small” (50GB), complex, very 
promisingpromising

• For random read small IO operations (8KiB), we 
4000 000 IOPS ( 26measure ~4000 to 5000 IOPS (compare to 26 

disks)
• For small random write operations (8KiB), we 

measure 2000 to 3000+ write IOPS (compare to 13 
disks)

• But for some of the 8K offsets the I/O completion p
latency is 10× the more common 0.2 ms

• “Wear-levelling/erasure block artefacts”?Wear levelling/erasure block artefacts ? 
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Conclusions

• New tools like ASH and DTrace change the way we 
can track IO operationscan track IO operations

• Overload in IO and CPU can not be seen from 
O l IO iOracle IO views

• Exadata offloading operations can be interesting 
(and promising)

• Flash SSD are coming, a lot of differences between g,
them. Writing is the issue (and is a driving price 
factor). Not applicable for everything. Not to be ) pp y g
used for everything for now (as write cache? Oracle 
redo logs). They change the way IO operations are g ) y g y p
perceived. 
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